

Architecture-Led Safety Analysis of the
Joint Multi-Role (JMR) Joint Common
Architecture (JCA) Demonstration System

Peter H. Feiler

December 2015

SPECIAL REPORT
CMU/SEI-2015-SR-032

Software Solutions Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

http://www.sei.cmu.edu

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-

uted in written or electronic form without requesting formal permission. Permission is required for any

other external and/or commercial use. Requests for permission should be directed to the Software En-

gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

ATAM® and Carnegie Mellon® are registered in the U.S. Patent and Trademark Office by Carnegie

Mellon University. FACE™ is a trademark of The Open Group in the United States and other coun-

tries.

DM-0002936

mailto:permission@sei.cmu.edu

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Abstract iv

1 Introduction 1

2 An Architecture-Led Safety Analysis Process 2
2.1 Context of an Architecture-Led Safety Analysis 2
2.2 An Integrated ALRS and ALSA Process 5
2.3 Incremental ALRS/ALSA Process in ACVIP 7
2.4 Requirement and Hazard Coverage 10

2.4.1 Coverage of System Interaction and Behavior 10
2.4.2 Coverage of Relevant Design and Operational Quality Attributes 11
2.4.3 Coverage of Faults and Their Impact 12

3 Modeling with AADL and the Error Model V2 Standard 14
3.1 EMV2 Fault Ontology and Guide Words 15

3.1.1 Service-Related Errors 16
3.1.2 Value-Related Errors 17
3.1.3 Timing-Related Errors 19
3.1.4 Replication-Related Errors 20
3.1.5 Concurrency-Related Errors 21
3.1.6 Authorization- and Authentication-Related Errors 21

3.2 Fault Propagation Across the System 21
3.3 EMV2 Support for Hazard Specification 23

4 Safety Analysis of ASSA 26

5 ASSA Health Monitoring System Requirements 35

6 Summary and Conclusion 37

Appendix Acronym List 38

References 39

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: SEBoK Stakeholder Requirement Classification 3

Figure 2: SEBoK System Requirement Classification 4

Figure 3: Integrated Architecture-Led Requirement Specification and Safety Analysis Process 5

Figure 4: Hazard Mitigation Strategies in Designing a Safety System 6

Figure 5: Two Dimensions of Incremental Safety Analysis and Safety System Design 7

Figure 6: SAE ARP 4754A Guidelines for Development of Civil Aircraft and Systems [ARP 4754A] 8

Figure 7: ACVIP ALRS/ALSA Process Steps 8

Figure 8: Iterations Through the System Hierarchy 9

Figure 9: Process Artifacts 10

Figure 10: Constraints, Products, Resources, Elements, and Transformation (CPRET) 11

Figure 11: Operational Quality Attributes and Utility Trees 12

Figure 12: Fault Ontology and Its Application to a System Specification 13

Figure 13: EMV2 Fault Ontology and Guide Words 15

Figure 14: HAZOP Guide Word Tables 15

Figure 15: Service-Related Error Type Hierarchy 17

Figure 16: Value-Related Error Type Hierarchy 18

Figure 17: Aliases for Value-Related Error Types 18

Figure 18: Timing-Related Error Type Hierarchy 19

Figure 19: Aliases for Timing-Related Error Types 20

Figure 20: Replication Error Type Hierarchy 20

Figure 21: Aliases for Replication Error Types 21

Figure 22: Concurrency Error Type Hierarchy 21

Figure 23: Error Propagation Across the System 22

Figure 24: Error Propagations and Containment Specifications as Contracts 23

Figure 25: Error Propagation Between Components 23

Figure 26: Elements of an EMV2 Hazard Description 24

Figure 27: Example Hazard Specification 25

Figure 28: Aircraft in Its Operational Environment 26

Figure 29: From CONOP to a Control System Architecture View 27

Figure 30: ASSA as Sensor in a Control System 27

Figure 31: Potential ASSA Hazards 28

Figure 32: ASSA System Functional Architecture 28

Figure 33: ASSA-Specific Error Types 30

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 34: EMV2 Annotation of the ASSA System Interface 30

Figure 35: Identifying Hazard Contributors 31

Figure 36: A Sample FHA Report 31

Figure 37: Error Mitigation by Design 31

Figure 38: Unhandled Fault Identification 32

Figure 39: Fault Impact Analysis Report for ASSA 32

Figure 40: Sampling of Functional Architecture Hazard Contributors 33

Figure 41: Hazard Contributions by Physical Architecture 33

Figure 42: Identification of Functional Components to Be Monitored 35

Figure 43: Identification of Physical Components to Be Monitored 36

Figure 44: Safety Analysis of Health Monitoring System 36

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

The Carnegie Mellon University Software Engineering Institute (SEI) team was involved in an
Architecture-Centric Virtual Integration Process shadow project for the U.S. Army’s Aviation and
Missile Research, Development, and Engineering Center (AMRDEC) Science & Technology
Joint Multi-Role (JMR) vertical lift program on the Joint Common Architecture (JCA) Demon-
stration. The JCA Demo used the Modular Integrated Survivability (MIS) system. The MIS pro-
ject provided a Situational Awareness Data Manager service that was integrated with Data
Correlation and Fusion Manager (DCFM). This report summarizes the approach taken in the ar-
chitecture-led safety analysis of what will be referred to as the JMR Aircraft Survivability Situa-
tion Awareness (ASSA) system. The ASSA system was the focus of the Phase 2 MIS project, in
which an AMRDEC team developed support services for ASSA and contractors provided a
DCFM component. These components were implemented to conform to the Future Airborne Ca-
pability Environment (FACE) Standard specification for portability and integrated on two hard-
ware platforms. By taking an architecture-led approach to safety analysis, the SEI team
demonstrated the use of Architecture Analysis and Design Language and the Error Model V2 An-
nex standard in performing safety analysis of an embedded software system.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Aviation
and Missile Research, Development, and Engineering Center (AMRDEC) Science and Technol-
ogy Joint Multi-Role (JMR) program in the Joint Common Architecture (JCA) Demonstration.
The JCA Demo used the Modular Integrated Survivability (MIS) system, which provides data
management and health monitoring services for what we refer to as the Aircraft Survivability Sit-
uational Awareness (ASSA) system. This system was implemented through integration by an
AMRDEC team of the MIS system with two instances of a Data Correlation and Fusion Manager
(DCFM) software component. The DCFM was contracted out via a Broad Agency Announcement
(BAA) to two suppliers.

The purpose of the JCA Demo ACVIP shadow project was to demonstrate the value of using
ACVIP technology, in particular the use of architecture models expressed in the SAE Architecture
Analysis and Design Language (AADL) standard in discovering potential system integration
problems early in the development process. The SEI team applied the architecture-led requirement
specification (ALRS) to capture requirements from existing requirement documents in models and
identify potential integration issues early in development through virtual system integration and
analysis. This aspect of the shadow project was discussed in the SEI special report Requirement
and Architecture Specification of the Joint Multi-Role (JMR) Joint Common Architecture (JCA)
Demonstration System [Feiler 2015b]. The potential integration issues were reported in the SEI
special report Potential System Integration Issues in the Joint Multi-Role (JMR) Joint Common
Architecture (JCA) Demonstration System [Feiler 2015a].

Subsequent to the ALRS analysis, the SEI team then applied an architecture-led safety analysis
(ALSA) to the ASSA by using the Error Model V2 (EMV2) standard to annotate the AADL
model of ASSA with safety-related information. This document summarizes the approach taken in
this safety analysis and describes the safety hazards and hazard contributors that have been identi-
fied, as well as the derived safety requirements for a Health Monitoring System (HMS) for ASSA.

The ASSA example illustrates the need for safety analysis of software-reliant systems. Software
has been identified as a major source of hazards [Feiler 2009]. As recently as May 2015, software
has been identified as the culprit—in this case it was found that the quad-redundant Generator
Control Unit of the Boeing 787 could shut down all power during flight if operating for more than
248 hours [Goodin 2015]. These issues are not being identified by current best industry practices,
such as SAE ARP 4761 [ARP 4761]. In many cases aircraft systems with embedded software are
not considered flight critical and as a result are not assigned Design Assurance Level A. In the
JCA Demo ACVIP shadow case study, the ASSA was assigned Design Assurance Level E. Cur-
rent system safety analysis best practice is highly labor-intensive and as a result rarely repeated
during the development process.

It has been demonstrated that automation of the system safety analysis practice SAE ARP 4761 is
feasible through modeling and analysis with the SAE AADL and EMV2 standards [Delange
2014]. It is this technology that we use for the ALSA process described in this report.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 An Architecture-Led Safety Analysis Process

The objective of the ALSA approach is to systematically identify hazards and hazard contributors
in systems, in particular in embedded software systems, as they have become a major source of
hazards. In this section we describe this process, which is centered on the use of AADL and Error
Model V2 standards and integrated with an ALRS process.

2.1 Context of an Architecture-Led Safety Analysis

ALSA is performed in the context of a set of stakeholder and system requirement specifications as
well as a socio-technical framework for hazard analysis. The System Engineering Body of
Knowledge (SEBoK)1 provides a classification of stakeholder requirements, shown in Figure 1,
and of system requirements, shown in Figure 2. In both cases, the classification ranges from re-
quirements for the system to requirements for development, such as business model and project
constraints, and to requirements for operation, such as operational and logistical requirements,
policy, and regulation. These categories are similar to elements of a general model of sociotech-
nical control, originally developed by Rasmussen [Rasmussen 2000] and adapted by Nancy
Leveson of the Massachusetts Institute of Technology for the Systems-Theoretic Accident Model
and Processes (STAMP) method of accident causality analysis [Leveson 2012].

1 See http://www.sebokwiki.org/wiki/

http://www.sebokwiki.org/wiki/

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 1: SEBoK Stakeholder Requirement Classification

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 2: SEBoK System Requirement Classification

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2.2 An Integrated ALRS and ALSA Process

ALSA is performed in the context of the ALRS process, which has been discussed in another SEI
special report [Feiler 2015b]. ALRS draws on the requirements engineering management 2009
handbook [FAA 2009]. The integrated ALRS/ALSA process borrows from several methods as ap-
propriate. SEI Mission Thread Workshops help users identify and prioritize key mission drivers
and use scenarios. SEI Quality Attribute Workshops focus on identifying and refining design and
operational quality attributes into measurable properties about the system. The SEI Architecture
Tradeoff Analysis Method (ATAM) evaluates architecture design against a prioritized set of mis-
sion drivers and use-case scenarios. The system safety analysis best practice (SAE ARP 4754 and
4761) describes Functional Hazard Assessment (FHA), Failure Mode and Effect Analysis
(FMEA), Fault Tree Analysis, and Common Cause Analysis among others as methods to assess
the safety of a system. STAMP is a causal hazard analysis method that focuses on system interac-
tions as much as on failures of system components.

The integrated ALRS/ALSA process is shown in Figure 3. Safety analysis related steps are shown
in green/italics.

Figure 3: Integrated Architecture-Led Requirement Specification and Safety Analysis Process

The first aspect of this process focuses on capturing the stakeholder requirements. In the context
of safety analysis, this is where operational safety risks are identified. They manifest themselves
as a set of accident categories that are of concern to the stakeholders. In the case of ASSA, we
identify entities in the operational environment of the aircraft whose unsafe interaction can lead to
the loss of the aircraft.

The second aspect of this process focuses on specifying a set of system requirements that are veri-
fiable (i.e., they represent a contract to be met). In that context, safety analysis identifies opera-
tional hazards that can lead to accidents of the previously identified accident categories. These
hazards represent exceptional conditions that result in unsafe system behavior. These conditions
may be failures of individual components, or they may be unsafe interactions between operational

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

components. In the case of ASSA, we recognize the role of ASSA as a system whose purpose is
to inform the pilot of hazards in the operational environment and the hazards it presents when ex-
hibiting faulty behavior.

The third aspect of this process focuses on identifying contributors to the identified hazards. This
is done on an architecture specification of the system where each of the components is examined
for failure conditions as well as component interactions that result in unsafe states. In the case of
ASSA we identify failures in the functional and physical system architecture that can lead to haz-
ardous presentation of information about hazards in the operational environment.

Once the contributors to hazards that lead to accidents are identified, the focus changes to strate-
gies for mitigating the identified hazards and hazard contributors. This process is outlined in Fig-
ure 4.

Figure 4: Hazard Mitigation Strategies in Designing a Safety System

Hazards may be the result of design defects that can be identified and removed during system de-
sign, or hazards may be unavoidable and, therefore, have to be mitigated during system operation.
A safety system that mitigates hazards typically consists of one or more of the following elements
—referred to as fault detection, isolation, reporting, and recovery:

 Fault detection is the capability of the safety system to monitor and detect faults during sys-
tem operation. It may involve detecting the fault at its source, by monitoring downstream out-
put and inferring upstream faults or by proactively probing the system through mechanisms
such as heartbeat.

 Fault isolation is the capability of limiting the effect of a failure to a subset of the system.
This is typically achieved by using fault containment mechanisms, such as address space pro-
tection in software, or sectioning of the power supply to different part of a system.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Fault reporting is the capability to inform a system entity, which may be the system operator,
of detected unsafe system behavior.

 Fault recovery is the capability to continue operation despite a failure through appropriate
system redundancy, reconfiguration, and recovery mechanisms.

In the case of ASSA, we identify requirements for a health monitoring system that informs the pi-
lot of the state of the ASSA.

2.3 Incremental ALRS/ALSA Process in ACVIP

The safety analysis and safety system design process continues incrementally along two dimen-
sions—see Figure 5.

Figure 5: Two Dimensions of Incremental Safety Analysis and Safety System Design

The first dimension focuses on the safety system. It is analyzed for potential hazards, and mitiga-
tion strategies are developed. In the case of ASSA, we discovered that co-location of the health
monitor software with the ASSA software on the same processor results in a common cause fail-
ure of the processor.

The second dimension of incremental safety analysis and safety system design is to iterate for
each layer of the system architecture. From a system engineering perspective this is already part
of the SAE ARP 4754A [ARP 4754A] recommended practice for civil aircraft and systems
(Figure 6).

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 6: SAE ARP 4754A Guidelines for Development of Civil Aircraft and Systems [ARP 4754A]

Figure 7 highlights the safety practices within the ACVIP. The ACVIP consists of three major
steps: define the operational context, develop the requirement specification, and develop the ar-
chitecture specification. The safety process with ACVIP is a top-down approach conducted
throughout the system hierarchy. It begins with the identification of operational safety risks (haz-
ards) as part of defining the operational context for a system.

• Specification of functional and physical system architecture

• Decomposition of requirements

• Develop Safety Architecture Design

Develop Architecture Specification

Finalize
Architecture
Specification

Define Operational
Context

• System overview

• Critical mission drivers

• Concept of Operation

• Stakeholder goals for
system

• Identify Operational
Safety Risks

Develop Requirement Specification

• Model-based specification of concepts

• Role and boundary of system

• System requirement specification and
coverage

• Identify Operational Hazards

& Hazard Contributors

• Identify Safety Requirements

• Virtual Integration and
Architecture Analysis

Figure 7: ACVIP ALRS/ALSA Process Steps

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The process is iterative in that it is necessary to go back and make changes or additions to previ-
ous steps. The process is conducted through the various levels of the system and architectural hi-
erarchy starting at the system level and continuing through to the component level of the
architecture. This is shown in Figure 8. There is interplay and feedback among the various layers.
First, the hazards, contributors, or requirements at a higher level are detailed in lower levels. Sec-
ond, hazards, contributors, or requirements identified at one level may prompt the reorganization
of a hazard, contributor, or requirement at a higher level. The execution of the process at a lower
level may prompt the identification of a safety risk (hazard) at the top level. In Figure 8, the Iden-
tify Operational Safety Risks step is represented by opaque text at the more detailed hierarchical
and component levels, indicating that the process is not explicitly conducted, since safety consid-
erations relate to the complete system. The exceptional conditions (hazards) and contributors at
lower levels are manifested as safety hazards at the system level.

system-level

Finalize Safety
Architecture

Design

Develop Safety Architecture Design
Create Safety Requirements

Identify
Operational
Safety Risks

Identify
Operational

Hazards

Identify
Hazard

Contributors

Finalize Safety
Architecture

Design

Develop Safety Architecture Design
Create Safety Requirements

Identify
Operational
Safety Risks

Identify
Operational

Hazards

Identify
Hazard

Contributors

Lowest-level

ar
ch

ite
ct

ur
e

le
ve

ls

Finalize Safety
Architecture

Design

Develop Safety Architecture Design
Create Safety Requirements

Identify
Operational
Safety Risks

Identify
Operational

Hazards

Identify
Hazard

Contributors

intermediate-levels

Figure 8: Iterations Through the System Hierarchy

The artifacts created during the process are shown in Figure 9. Hazards and their contributing fac-
tors (contributors) at multiple levels of the system hierarchy are identified. These are used as the
basis for defining safety requirements for the system. These requirements are used to guide the
overall system architecture design and may result in safety-specific architectural elements that are
incorporated into the system architecture.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

system-level

hazards

safety
requirements

system architecture

safety architecture
elements

more detailed architectural levels

hazard
contributors

Finalize Safety
Architecture

Design

Develop Safety Architecture Design
Create Safety Requirements

Identify
Operational
Safety Risks

Identify
Operational

Hazards

Identify
Hazard

Contributors

Finalize Safety
Architecture

Design

Develop Safety Architecture Design
Create Safety Requirements

Identify
Operational
Safety Risks

Identify
Operational

Hazards

Identify
Hazard

Contributors legend
derived from

results from

control flow

Figure 9: Process Artifacts

2.4 Requirement and Hazard Coverage

We improve the quality of requirement specification by providing a measurable way of assessing
requirement coverage. This consists of three parts:

1. Identification of all interaction points with the operational environment in terms of input-
processing-output functionality and in terms of the resources and supervisory control neces-
sary to provide this functionality. Each interaction point is expected to be addressed by re-
quirements.

2. Identification and quantification of design and operational quality attributes that are key to
achieving the mission. Each of these key quality attributes must be addressed by a require-
ment specification.

3. Identification of exceptional conditions that represent hazards to the safe and secure opera-
tion of the system. A fault ontology provides a checklist of failure conditions that are poten-
tially propagated to other systems and that other systems potentially propagate to the system
of interest.

2.4.1 Coverage of System Interaction and Behavior

We use a framework for specifying a system that has its origin with the French System Engineer-
ing Society (Association Française d'Ingénierie Système).2 This framework, called Constraints,

2 See http://en.wikipedia.org/wiki/Process(engineering)

http://en.wikipedia.org/wiki/Process

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Products, Resources, Elements, and Transformation (CPRET), is illustrated in Figure 10. A sys-
tem is defined to transform a set of inputs into a set of outputs while potentially maintaining state,
utilizing resources, and being under control of a supervisory entity.

Figure 10: Constraints, Products, Resources, Elements, and Transformation (CPRET)

Each interaction point is expected to be addressed by requirements. The specification of each in-
teraction point is expected to indicate the type of interaction, the type of data or control being ex-
changed with others, the rate at which it is exchanged, and any exceptional conditions that must
be considered. For input, supervisory control, and resource usage interaction points this represents
assumptions being made about the operational environment. For output and supervisory control
feedback this represents guarantees made by the system to others.

2.4.2 Coverage of Relevant Design and Operational Quality Attributes

Next we utilize the concepts of quality attributes and utility trees from the SEI ATAM. These
quality attributes represent two categories of requirements:

1. developmental requirements, such as modifiability, portability, or assurability

2. operational requirements, with subcategories of mission-, safety-, and security-critical re-
quirements. Mission-critical requirements include function, behavior, and performance.
Safety-critical requirements deal with mitigating hazards. And security-critical requirements
deal with assuring protection of information and trust.

Figure 11 illustrates a partial set of quality attributes—three operational, and one developmental.
Figure 11 also shows a refinement of the quality attributes into utility functions and their quantifi-
cation into requirements, whose satisfaction can be measured. The annotations of
L(ow)/M(edium)/H(igh) pairs indicate levels of criticality and difficulty to help focus architec-
tural design and evaluation/verification.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 11: Operational Quality Attributes and Utility Trees

This utility tree becomes a checklist for assuring that relevant quality attributes of the system are
being addressed by requirement specifications.

2.4.3 Coverage of Faults and Their Impact

Finally, we use a fault ontology that has been defined as part of the EMV2 language standard that
is part of the SAE AADL standard suite. Figure 12 illustrates the fault ontology on the left. This
ontology focuses on propagating effects of system failure modes to other systems. The most com-
mon effect is omission (i.e., the failure to provide a service or output). An example is failure to
provide power. Commission is when service or output is provided at a time when it is not ex-
pected. Other examples of the ontology are value errors, timing errors, replication errors, and con-
currency errors. (For more on the fault ontology and its interaction with hazard and operability
(HAZOP) guide words, see Section 3.1.)

The right side of Figure 12 illustrates the systematic application of these error types to a system
specification. It shows the interaction between a control system and a system under control. We
annotate this specification with error types to indicate whether certain faults are expected to occur.

STAMP has a similar model to classify hazards in control flows [Leveson 2012]. Some faults are
characterized somewhat ambiguously (e.g., inadequate or inappropriate). These descriptions can
be refined into more precise descriptions using the utility tree approach of ATAM, leading to clas-
sifications that tend to align with the EMV2 fault ontology.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 12: Fault Ontology and Its Application to a System Specification

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Modeling with AADL and the Error Model V2 Standard

To create AADL models, we use elements of the Virtual Upgrade Validation method [de Niz
2012]. The method helps users identify the type of system they are dealing with and the appropri-
ate way of representing it in AADL. The method also provides guidance for focusing on common
problem areas in software-reliant systems and ways to represent critical operational quality attrib-
utes. The SEI special report Requirement and Architecture Specification of the Joint Multi-Role
(JMR) Joint Common Architecture (JCA) Demonstration System provides additional guidance on
how to capture a system in its operational context, stakeholder and system requirements, and the
system architecture in an ACVIP manner [Feiler 2015b].

In this document, we summarize how to use the EMV2 standard to support ALSA. A full guide on
the use of EMV2, titled Architecture Fault Modeling and Analysis with the Error Model Annex
V2, will be available as an SEI special report.3

We use EMV2 to

 systematically identify exceptional conditions that, when propagated to other systems and
system components, represent hazards. We use

 the EMV2 fault ontology expressed as EMV2 error types that act as a check list or

HAZOP style guide words

 EMV2 error propagation declarations to specify outgoing propagations that are error

sources

 systematically address how systems respond to incoming propagations. We use

 incoming error propagation declarations to specify that a system expects error propaga-

tions from other system components

 error sink and path declarations to specify that incoming propagations are masked (e.g.,
extrapolate a missing value from previous values), passed on to other components (e.g.,
produce no output if input is missing), or transformed to a different error type (e.g., send

no output if the input is out of range or otherwise corrupted)

We proceed by first elaborating on the EMV2 fault ontology and then describing the EMV2 con-
structs to specify error propagation behavior across the system.

Finally, as we focus on derived requirements for the ASSA health monitor, we use EMV2 decla-
rations to specify assumptions about a safety system (e.g., who is responsible for detection of fault
occurrences) and the effect of recovery actions by the safety system on the error states represent-
ing working states and failure modes.

3 Feiler, Peter H. et al. Architecture Fault Modeling and Analysis with the Error Model Annex V2. Special Report.
Software Engineering Institute, Carnegie Mellon University. Forthcoming.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.1 EMV2 Fault Ontology and Guide Words

Figure 13: EMV2 Fault Ontology and Guide Words

The EMV2 fault ontology focuses on characterizing error propagation between system compo-
nents (i.e., the effect a fault occurrence in one component can have on other components). Com-
mon error propagation types are shown in Figure 13, while the full ontology is described in
subsections 3.1.1 through 3.1.6. The intent of the ontology is to provide a checklist of error propa-
gation types in abstract terms that can be adapted to specific domains and applications. Its role is
similar to guide words in a HAZOP process (example shown in Figure 14).

Figure 14: HAZOP Guide Word Tables

The EMV2 fault ontology is expressed as a set of error types that are then used to characterize er-
ror propagations. The error types are defined by viewing components as providers of services that
consist of a sequence of service items. Error types fall into the categories of service-related errors,
value-related errors, time related errors, and errors related to redundancy and concurrency. Fur-
thermore, within each category the error types may characterize the service as a whole, the se-
quence of service items, or an individual service item. The EMV2 Annex standard includes a
formal specification of each of the error types. The EMV2 Annex standard also includes a user-
extensible set of aliases for some of the error types that reflect application-specific guide words.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.1.1 Service-Related Errors

Service-related errors (ServiceError) represent errors with respect to the number of delivered ser-
vice items. We distinguish between omission errors to represent service items not delivered and
commission errors to represent delivery of service items that were not expected to be delivered.

The error types for individual service items as subtypes of ServiceError are

 ItemOmission (i.e., the omission of a single service item such as a lost message)

 ItemCommission (i.e., provision of an item when not expected such as a spurious message)

The error types for a sequence of service items (SequenceOmission) are

 SequenceOmission (i.e., a number of missing service items, such as missed sensor readings)

 BoundedOmissionInterval (i.e., a minimum number of service items between item
omissions such as missed sensor readings)

 TransientServiceOmission (i.e., a limited sequence of item omissions such as a tempo-
rary power outage)

 EarlyServiceTermination (i.e., omission of all service items partway into the service
provision such as a power failure)

 LateServiceStart (i.e., initial service items not provided such as difficulty in starting a
generator to provide power)

 SequenceCommission (i.e., a limited sequence of item commissions with the following sub-
types):

 TransientServiceCommission (i.e., a limited sequence of item extra service items, such
as extra alarm messages)

 LateServiceTermination (i.e., additional service items after the expected termination of
service, such as warning messages about an overheated engine after the engine stops)

 EarlyServiceStart (i.e., extra service items are provided before the expected service
start, such as sensor readings before engine start)

The error types for the service as a whole are

 ServiceOmission (i.e., failure to provide a service when expected such as no power due to
blown transformer)

 ServiceCommission (i.e., provision of service when not expected such as inadvertent charge
on an inactive power line)

These errors have been placed into a type hierarchy shown in Figure 15.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 15: Service-Related Error Type Hierarchy

3.1.2 Value-Related Errors

Value-related errors deal with the value domain of a service. We distinguish between value errors
of individual service items (ItemValueError), value errors that relate to the sequence of service
items (SequenceValueError), and value errors related to the service as a whole (ServiceValueEr-
ror). They form the type set ValueRelatedError.

Each of the three types is the root of a separate type hierarchy. This allows us to use them in com-
bination in a type product (e.g., to specify that we have a BoundedValueChange error that may be
OutOfRange).

ItemValueError consists of

 DetectableValueError (i.e., a value error that is detectable from the value itself, perhaps be-
cause it is out of range or has parity error)

 UndetectableValueError (i.e., a value error that cannot be recognized based on available in-
formation)

DetectableValueError has the following subtypes

 OutOfRange error (i.e., a value that is outside a specified range), with two subtypes—Be-
lowRange and AboveRange

 OutOfBounds error (i.e., a value error that may be within range, but whose value affects a
state in such a way that it will be outside specified bounds). For example, in a control system
a command to move a certain number of steps may be within range of the maximum number
of steps that can be executed in a frame, but may result in a position that is outside the range
of acceptable positions.

SequenceValueError consists of

 BoundedValueChange (i.e., the difference between two consecutive values is greater than a
specified limit). For example, in a control system set-point values may be expected to only
change by up to a specified value.

 StuckValue (i.e., a value that remains the same for a number of consecutive service items)

 OutOfOrder (i.e., values in the sequence that are not in the correct order)

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

ServiceValueError consists of

 OutOfCalibration (i.e., a value error where all values are off by some value). For example, in
a control system due to an incorrect calibration value all controller output values are not cor-
rect.

Figure 16 shows the type hierarchies for value-related errors. Note that the top-level error types
are grouped into the type set ValueRelatedError (not shown graphically). Note also that both se-
quence and service value errors imply item value errors.

Figure 16: Value-Related Error Type Hierarchy

The EMV2 Annex standard includes a predeclared set of aliases for value errors, as shown in Fig-
ure 17.

-- Common aliases for value related errors
ValueError renames type ItemValueError; -- legacy
SequenceError renames type SequenceValueError; -- legacy

IncorrectValue renames type ItemValueError;
ValueCorruption renames type ItemValueError;
BadValue renames type ItemValueError;

SubtleValueError renames type UndetectableValueError;
BenignValueError renames type DetectableValueError;
BenignValueCorruption renames type DetectableValueError;
SubtleValueCorruption renames type UndetectableValueError;

Figure 17: Aliases for Value-Related Error Types

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.1.3 Timing-Related Errors

Timing-related errors deal with the time domain of a service. We distinguish between timing er-
rors of individual service items (ItemTimingError), timing errors that relate to the sequence of ser-
vice items (SequenceTimingError or alias RateError), and timing errors regarding the service as
a whole (ServiceTimingError). They form the type set TimingRelatedError.

Each is the root of a separate type hierarchy allowing us to characterize them independently (e.g.,
to specify that we have a time shifted service executing at the wrong rate). Item timing errors and
sequence timing errors refer to a timeline with respect to service start time, while service timing
errors use clock time as reference time. Therefore, service timing errors are independent of the
other two, while sequence timing errors imply item timing errors.

ItemTimingError consists of

 EarlyDelivery (i.e., delivery of a service item before an expected time range, such as a sensor
reading arriving before the previous reading has been sampled for processing)

 LateDelivery (i.e., delivery of a service item after an expected time range, such as a sensor
reading arriving after the beginning of the next frame)

SequenceTimingError with the alias RateError consists of

 HighRate error (i.e., the inter-arrival time of all service items is less than the expected inter-
arrival time). For example, a sender sends periodic messages with a period of 25ms, while the
receiver processes the messages as they arrive and takes an average of 26ms to complete pro-
cessing.

 LowRate error (i.e., the inter-arrival time of all service items is greater than the expected in-
ter-arrival time)

 RateJitter error (i.e., service items are delivered at a rate that varies from the expected rate by
more than an acceptable tolerance)

ServiceTimingError with the alias ServiceTimeShift represents errors where a service delivers all
service items time shifted by a time constant. It consists of two subtypes—DelayedService and
EarlyService.

The type hierarchies for timing-related errors are shown in Figure 18. Note that the top-level error
types are grouped into the type set TimingRelatedError (not shown in Figure 18).

Figure 18: Timing-Related Error Type Hierarchy

The EMV2 Annex standard includes a predeclared set of aliases for timing errors, as shown in
Figure 19.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

TimingError renames type ItemTimingError; -- legacy
RateError renames type SequenceTimingError; -- legacy
EarlyData renames type HighRate;
LateData renames type LowRate;
ServiceTimeShift renames type ServiceTimingError;

Figure 19: Aliases for Timing-Related Error Types

3.1.4 Replication-Related Errors

Replication-related errors (ReplicationError) deal with replicates of a service item. Replicate ser-
vice items may be delivered to one recipient (e.g., a fault tolerance voter mechanism) or to multi-
ple recipients (e.g., separate processing channels). Replicate service items may be the result of
inconsistent fan-out from a single source, or they may be the result of an independent error occur-
ring to individual replicates (e.g., readings of the same physical entity by multiple sensors or an
error occurrence in one of the replicated processing channels).

ReplicationError consists of

 AsymmetricReplicatesError (i.e., at least one of the replicates is different from the others)

 SymmetricReplicatesError, where all replicates have the same error (e.g., the error was intro-
duced before the service item was replicated)

We distinguish between the following asymmetric replicates errors:

 AsymmetricValue error with the alias InconsistentValue (i.e., the value of at least one repli-
cated service items differs from the other replicates). In the case of the subtype Asymmetric-
ExactValue error, the values are expected to be exactly the same, while for the subtype
AsymmetricApproximateValue they cannot differ by more than a threshold.

 AsymmetricOmission error with the alias InconsistentOmission with the subtype Asymmet-
ricItemOmission (i.e., at least one of the replicates is missing) (encounters an ItemOmission)
and AsymmetricServiceOmission (i.e., at least one of the replicates is missing) (encounters a
ServiceOmission)

 AsymmetricTiming error with the alias InconsistentTiming (i.e., at least one of the replicated
service items is delivered outside the expected time interval)

We have the respective set of error subtypes for SymmetricReplicatesError.

Figure 20 illustrates the type hierarchy for replication errors.

Figure 20: Replication Error Type Hierarchy

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The EMV2 Annex standard includes a predeclared set of aliases for replication errors as shown in
Figure 21.

InconsistentValue renames type AsymmetricValue;
InconsistentTiming renames type AsymmetricTiming;
InconsistentOmission renames type AsymmetricOmission;
InconsistentItemOmission renames type AsymmetricItemOmission;
InconsistentServiceOmission renames type AsymmetricServiceOmission;
AsymmetricTransmissive renames type AsymmetricValue;

Figure 21: Aliases for Replication Error Types

3.1.5 Concurrency-Related Errors

Concurrency-related errors (ConcurrencyError) address issues that occur when concurrently exe-
cuting tasks access shared resources. We distinguish between race conditions (RaceCondition) in
the form of ReadWriteRace and WriteWriteRace, and mutual exclusion errors (MutExError) in
the form of Deadlock and Starvation. Figure 22 shows the type hierarchy.

Figure 22: Concurrency Error Type Hierarchy

3.1.6 Authorization- and Authentication-Related Errors

Authorization-related errors (AuthorizationError) are related to access control. Authorization er-
rors consist of privilege enforcement errors and privilege administration errors. Examples of au-
thorization errors are ambient authority errors, privilege escalation errors, confused deputy errors,
privilege separation errors, privilege bracketing errors, compartmentalization errors, least privi-
lege errors, privilege granting errors, and privilege revocation errors.

Authentication-related errors (AuthenticationError) are related to authentication of services (roles,
agents), of information, and of resources.

3.2 Fault Propagation Across the System

With EMV2 we can annotate individual system components with outgoing and incoming error
propagations and whether they act as a source, sink, or pass-through of fault occurrences. Com-
bined with the propagation paths already specified in the AADL model in terms of port connec-
tions, access connections, and deployment bindings (shown in Figure 23), we have all the
elements to support the Fault Propagation and Transformation Calculus (FPTC) [Paige 2009].

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

This allows a tool to perform inductive and deductive fault impact analysis (i.e., identify effects of
fault occurrences and identify contributors to hazards or accidents). In the context of the case
study, we are able to identify hazard contributors of ASSA.

Figure 23: Error Propagation Across the System

The following EMV2 concepts are used to annotate system components:

 error propagation and containment associated with interaction points (ports, data and bus ac-
cess, remote service calls, deployment binding points) to other components to specify the dif-
ferent types of effect, such as bad value or no service, a component failure or incoming
propagation can have on other components, or that a component is expected not to propagate
certain types of effects. Note that outgoing and incoming propagation and containment speci-
fications act as contracts between interacting components (i.e., as guarantees and assumptions
that must be verified).

 error types for characterizing the different types of errors being propagated (e.g., a value error
or timing error) or different types of error events (e.g., a component being overheated,
cracked, or stuck)

 error sources for identifying components as sources of error propagation (i.e., a component
internal failure results in a propagation)

 error paths and sinks for specifying how components respond to incoming propagations (i.e.,
whether a particular error propagation is passed on as is to other components, is propagated to
other components as a different error type, or is contained by the component)

 propagation paths, determined by the logical and physical connectivity in the architecture, the
deployment of software on hardware, and user-defined propagation paths not recorded in the
AADL core model

 probability properties associated with the occurrence of error propagations, sources, paths,
and sinks

Figure 24 illustrates these concepts. Figure 27 shows a textual specification of a position sensor as
an AADL device complete with a specification of its outgoing error propagation acting as an error
source. It also includes descriptive information about it as a hazard source.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 24: Error Propagations and Containment Specifications as Contracts

Figure 25 illustrates error types associated with outgoing and incoming ports to indicate error
propagations, shown as rectangles of different colors. The propagation path between components
follows the port connection between the components A and B. Component A is shown to be a
source of error propagations of a specific type caused by a component A failure of a particular
type (shown as colored oval). Component A also passes on incoming errors from its in port
through its out port.

Figure 25: Error Propagation Between Components

3.3 EMV2 Support for Hazard Specification

The Error Model Annex includes a set of properties that are defined in the property set EMV2.
One such property is Hazards, which has a record structure to capture all relevant aspects of a
hazard description in the context of an FHA. It allow modelers to provide descriptive hazard in-
formation to the model. Figure 26 shows the elements of this record structure.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 26: Elements of an EMV2 Hazard Description

The modeler examines each component type of interest and determines whether it is a potential
hazard source. They do that by assigning a set of hazard property values to error sources, outgoing
error propagations of components. These assignments can be specific to a particular error type.
Severity and Likelihood values can be assigned as part of the Hazards record, or they can be as-
signed as separate property values. Those values are used if the Severity or Likelihood value in
the Hazard record is not set.

Figure 27 illustrates an example hazard specification that is associated with a system component
(PositionSensor). The Hazard property is associated with the Failed state of an error source. Such
hazard specifications are characterized with severity and criticality.

device PositionSensor
features
 PositionReading: out data port ;
flows
 f1: flow source PositionReading {Latency => 2 ms .. 3 ms;};
annex EMV2 {**
use types ErrorLibrary;
use behavior ErrorModelLibrary::Simple;
error propagations
 PositionReading: out propagation {ServiceOmission, ItemOmission, ValueError};
flows
 ef1:error source PositionReading when Failed;
end propagations;
properties
 EMV2::hazards =>
 ([crossreference => "1.1.1";

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 failure => "Loss of sensor readings";
 phases => ("all");
 severity => 1;
 likelihood => C;
 description => "No position readings due to sensor failure";
 comment => "Becomes major hazard, if no redundant sensor";
])
 applies to ef1.Failed;
**};
end PositionSensor;

Figure 27: Example Hazard Specification

Tailored versions of the Hazards property are defined in the property set ARP 4761 and
MILSTD882. They use labels consistent with the respective standard. For a full discussion of the
different forms of safety analysis, including FHA modeling with AADL and EMV2 see Delange
[Delange 2014].

Once all relevant system components (i.e., their component type declarations) have been anno-
tated with EMV2 error source or propagation declarations and hazard information, we create an
AADL instance of the ASSA and invoke the FHA tool in OSATE. This produces a tabular func-
tional hazard assessment report [Delange 2014].

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Safety Analysis of ASSA

In this section, we apply the ALSA process to the ASSA system—the target of the JCA Demo
ACVIP shadow project. The ASSA is the combined integration of the DCFM software component
with the MIS system. The first step is to understand the requirements from a stakeholder perspec-
tive. This is usually done by examining a set of mission scenarios in the context of a Concept of
Operation (CONOP) description.

In our case study of the ACVIP shadow project, we are dealing with an aircraft in an operational
mission context. The focus is not on hazards in the flying aircraft itself, but on hazardous in-flight
conditions as the aircraft interacts with entities in its operational environment that can potentially
lead to loss of aircraft. In other words, we are identifying accident categories and focus on those
that address interactions between the aircraft and its environment.

Figure 28 illustrates the aircraft and entities in its operational environment whose interactions can
potentially lead to an accident in the form of aircraft loss. In our case study the stakeholder re-
quirement document provided insight into the entities to be considered. They are captured in the
AADL model as a set of abstract components and placed into a type hierarchy, similar to repre-
senting them as a Unified Modeling Language (UML) class diagram. In Figure 28, we have only
elaborated the type hierarchy for threats.

Figure 28: Aircraft in Its Operational Environment

As noted in the SEI special report Requirement and Architecture Specification of the Joint Multi-
Role (JMR) Joint Common Architecture (JCA) Demonstration System, several types of obstacles
are mentioned in the textual stakeholder requirement document—but their relationship was am-
biguous [Feiler 2015b]. Another interesting observation was that although obstacles were indi-
cated as leading to a higher loss of aircraft, obstacle tracking was not included in the textual
system requirement specification document.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A common way of viewing a system in its operational context is via Monitored and Controlled
Variables. This approach—documented in the FAA Requirement Engineering Management
Handbook [FAA 2009]—has its roots with Parnas [Parnas 1991]. These variables represent a state
that can be used to characterize unsafe system conditions and interactions. To operationalize this
view we introduce sensors and actuators to represent the monitored and controlled variables. Fig-
ure 29 illustrates this. Note that some systems are under our control, while other systems we can
only observe.

Figure 29: From CONOP to a Control System Architecture View

Figure 30 illustrates this control system view for our case study. The pilot acts as the control sys-
tem for the aircraft—utilizing appropriate sensors for input and actuators to issue commands to
the aircraft. The ASSA plays the role of a sensor with respect to entities in the operational envi-
ronment that have been identified in the previous phase as potentially leading to accidents. In
other words, the ASSA is an intelligent system that makes the pilot aware of hazardous situations
that affect aircraft survivability.

Figure 30: ASSA as Sensor in a Control System

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

To identify the hazards ASSA poses to the pilot, we use the EMV2 fault ontology as a check list.
Figure 31 shows the resulting identified hazards.

Figure 31: Potential ASSA Hazards

The process involves interaction between a subject matter expert and a safety analyst to identify
the actual hazard in the application domain of situational awareness (SA) systems. It utilizes the
functional architecture model of ASSA as context (shown in Figure 32). This architecture has
been captured as a reference architecture for SA systems in AADL [Feiler 2015b]. We annotate
this AADL model with fault information through EMV2 declarations.

Figure 32: ASSA System Functional Architecture

First, we consider omission. This may take the form of service omission (i.e., the ASSA failing to
operate), or item omission (i.e., the ASSA failing to inform the pilot of a present threat or obsta-
cle). To the pilot this appears as missing SA information. As a result of this hazard, the pilot may
not take evasive action to avoid the threat of obstacle.

Second, we consider commission. This takes the form of informing the pilot of threats or obsta-
cles that do not exist (i.e., presenting the pilot with erroneous SA information). This presents a

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

risk in that the pilot may take an action to avoid a non-existent obstacle and unnecessarily expose
the aircraft to enemy fire.

Third, we consider value errors. These take the form of showing an incorrectly calculated position
relative to the own aircraft position and incorrectly determining the threshold for warning and an-
nunciation.

Fourth, we consider timing errors. These take the form of taking longer than expected in perform-
ing the processing and providing the information to the pilot (i.e., the end-to-end latency in the in-
formation flow from the sensors to the pilot display). Since we are dealing with time-sensitive
information, the result is for the pilot to be informed too late and with inaccurate information.

Finally, we consider replication errors. In the case of the ASSA, there is the potential for two in-
formation paths involving own aircraft position, one passing this position information directly
from the embedded global positioning satellite/inertial navigation system (EGI) to the pilot dis-
play and the other feeding the position through the ASSA to compute aircraft-relative position in-
formation of entities in the operational environment. The effect is an asymmetric timing error on
the pilot display, which translates into inaccurate information.

As we have different categories of threats, obstacles, and terrain, there may be different thresholds
for warning and annunciation. There is also the issue of partial failure of the ASSA (i.e., sensor
failure for certain categories of these entities in the operational environment that the pilot should
be aware of).

We record this information in two steps.

First, we define a set of error types that reflect the types of fault propagation in a domain-specific
set of guide words. We do this by defining an error type library called ExceptionalConditionTypes
with error types as extensions of the predeclared EMV2 error types (fault ontology), as aliases
(renames) of existing types, or as new error types as shown in Figure 33.

package ExceptionalConditionTypes

public

annex EMV2 {**

 error types

 ASSALoss: type extends ErrorLibrary::ServiceOmission;

 InvalidASSAData: type;

 DegradedASSAData : type extends InvalidASSAData;

 StaleASSAData : type extends InvalidASSAData;

 FalsePositiveASSAData: type;

 FalseNegativeASSAData: type extends ErrorLibrary::ItemOmission;

 OutOfRangeASSAData renames type ErrorLibrary::OutOfRange;

 UntimelyASSAData: type extends ErrorLibrary::LateDelivery;

 TimeSkewedASSADataAircraftPosition: type extends ErrorLibrary::AsymmetricTiming;

 InaccurateASSAData: type set {OutOfRangeASSAData, TimeSkewedASSADataAircraftPosi-
tion};

 ASSAFaults: type set {FalsePositiveASSAData,FalseNegativeASSAData, Inaccurate-
ASSAData };

 -- consequent accident

 AircraftLoss: type extends ErrorLibrary::ServiceOmission;

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 --Track error types

 --sequence errors

 ObservationsOutofOrder: type extends ErrorLibrary::OutOfOrder;

 ObservationMissing: type extends ErrorLibrary::ItemOmission;

 --Geographic error types

 --Inaccurate and imprecise

 ObservationsImprecise: type extends ErrorLibrary::ValueError;

 ObservationsInaccurate: type extends ErrorLibrary::ValueError;

 --Position errors

 AirspeedValueError: type extends ErrorLibrary::ValueError;

 AltitudeValueError: type extends ErrorLibrary::ValueError;

 LongitudeValueError: type extends ErrorLibrary::ValueError;

 LatitudeValueError: type extends ErrorLibrary::ValueError;

 -- track set related errors

 TrackSetIntegrity renames type ErrorLibrary::ValueError;

 TrackOmission renames type ErrorLibrary::ItemOmission;

 TrackValueError : type extends ErrorLibrary::ValueError;

 TrackComputationError : type extends ErrorLibrary::ValueError;

 end types;

**};

end ExceptionalConditionTypes;

Figure 33: ASSA-Specific Error Types

Second, we use the guide words to perform the safety analysis. We annotate the interaction points
(ports, feature groups, etc.) of ASSA with error propagation declarations that reference the error
types we just defined. Figure 34 shows the outgoing propagations to the pilot. It also shows that
we do not expect the OwnAircraftPosition to be out of range. Finally, it shows that missing own
aircraft position information is mapped into FalseNegativeASSAData to indicate that an entity
may falsely be considered absent.

Figure 34: EMV2 Annotation of the ASSA System Interface

Once we have elaborated the functional and physical architecture of ASSA (see also Feiler
2015b), we examine each ASSA component from a safety analysis perspective, identifying poten-
tial hazard contributors. The steps are outlined in Figure 35.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 35: Identifying Hazard Contributors

In the first step, we identify potential hazard sources for each of the components that interact with
the ASSA. In our example, we annotate the EGI unit that provides aircraft position information.
We then instantiate an AADL model that includes an instance of ASSA, EGI, and the pilot and
invoke the FHA tool in OSATE. This results in an FHA report as illustrated in Figure 36.

Figure 36: A Sample FHA Report

Note that some of these hazard contributors are design defects that can be eliminated during de-
sign. In EMV2 we have the ability to tag different error sources as to whether they are to be con-
sidered design errors that can be eliminated by design revisions or operational exceptional
conditions that impose requirements on a safety system. Figure 37 shows some candidates for
elimination by design.

Figure 37: Error Mitigation by Design

In a second step, we revisit each component type to identify any incoming error propagations
from other components and how they are addressed (i.e., whether they are masked [error sink] or
passed through to other component [error path to an outgoing error propagation]).

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Once we have specified all outgoing and incoming error propagations, the EMV2 consistency
analysis identifies mismatched assumptions about error propagation along each of the connections
between components. For example, the consistency analysis identifies unhandled faults where an
outgoing propagation from one system component is not expected as incoming error propagation
by a receiving system component. Figure 38 shows such an unhandled fault identification by
ASSA when its incoming error propagation does not include value errors.

Figure 38: Unhandled Fault Identification

Similarly, a fault impact analysis uses the same to trace the impact of error sources through the
system by following a propagation path identified by connections and error flows. In our example,
it traces hazard contributors to the ASSA hazards and to resulting incidents. Figure 39 shows a
fault impact analysis report for ASSA in its operational context that includes the EGI before the
ASSA model has been expanded into its subsystems. The report shows the component and the ini-
tial failure mode. The error type shown is that of the error source declaration. If the error type is
not present in the error source, the error type of the outgoing error propagation is shown. The
first-level effect column shows the outgoing effect, identifying the outgoing error propagation
type and the destination. The entry then repeats the failure mode of the affected component and its
propagation as a next-level effect. This generic fault impact report can be adapted to specific
FMEA formats.

Figure 39: Fault Impact Analysis Report for ASSA

Once we have elaborated the functional and system architecture of ASSA (see also the SEI special
report CMU/SEI-2015-SR-030 [Feiler 2015b]), we examine each ASSA component from a safety
analysis perspective, identifying potential hazard contributors. They are recorded as EMV2 anno-
tations for each of the ASSA. Figure 40 shows a sampling of potential hazard contributors by the
functional architecture of ASSA. When rerunning the FHA tool these potential hazards will be in-
cluded in the report.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 40: Sampling of Functional Architecture Hazard Contributors

Separate from the functional architecture, we examine the hardware platform system architecture
of ASSA for hazard contributors. It consists of the sensors, processor, display, and network com-
ponents. All of them are dependent on external power supply. This architecture and its hazard
contributors are shown in Figure 41. In the example, we have focused on component failures
which manifest themselves as service omission error propagations. In the case of the general pro-
cessing unit (GPU), data corruption in memory is being considered. In the case of the network la-
belled Ethernet, we consider dropped packets (i.e., item omission).

Figure 41: Hazard Contributions by Physical Architecture

Again, once the AADL model of the hardware platform is annotated with incoming error propaga-
tions and error paths, we perform a fault impact analysis to get a report of how failure of a hard-
ware platform component affects other hardware platform components.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Finally, we define an ASSA system configuration that includes the hardware platform and add a
binding specification of the functional architecture to elements of the hardware platform using
AADL binding properties. We also revise the EMV2 annotations of functional architecture com-
ponents being bound to the platform and platform components to identify potential propagations
of error types between the functional architecture and platform due to the binding. After we reran
the fault impact analysis, the report now includes the effects of failures in the platform propagat-
ing to the ASSA system.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 ASSA Health Monitoring System Requirements

Once the ASSA hazards have been identified, we can define a set of derived requirements for a
Health Monitoring System for the ASSA. The original textual system requirement document in-
cluded requirements for a health monitor. Its requirement statements focused primarily on as-
sessing the health of the sensors at startup time. They stated that as long as one sensor was
operational the system is to enter operational mode. The requirement document did not cover
monitoring during operation and the kind of health information to report to the pilot (e.g., which
subset of sensors is operational).

In the context of the ALSA process, we can use the results of the safety analysis to determine
which ASSA components are to be monitored during operation (i.e., whose conditions have not
been eliminated during design and can actually be detected). Figure 42 shows that in our example
the health monitor should track whether there are missing sensor readings and whether the maxi-
mum data volume is exceeded (i.e., available storage is exhausted).

Figure 42: Identification of Functional Components to Be Monitored

Figure 43 illustrates the physical components to be monitored for failure (omission) and, in the
case of the Ethernet network, also for dropped packets and data corruption.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 43: Identification of Physical Components to Be Monitored

Finally, we apply the safety analysis process to the Health Monitoring System itself. This is illus-
trated in Figure 44. The health monitor is a piece of software that must execute on a processor. If
it is bound to the same processor as the ASSA functions it is responsible for monitoring, then a
processor failure cannot be detected and reported by the health monitor. This is determined by a
fault impact analysis whose impact trace shows that a GPU failure propagates to both the ASSA
functions and the health monitor functions.

Figure 44: Safety Analysis of Health Monitoring System

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Summary and Conclusion

The purpose of the JCA Demo ACVIP shadow project was to demonstrate the value of using
ACVIP technology, in particular the use of architecture models expressed in the SAE AADL
standard, in discovering potential system integration problems early in the development process.
The SEI team demonstrated two ACVIP processes in this project, one for Architecture-Led Re-
quirements Specification (ALRS) and another for the Architecture-Led Safety Analysis (ALSA).

The SEI special report Requirement and Architecture Specification of the Joint Multi-Role (JMR)
Joint Common Architecture (JCA) Demonstration System summarizes the ALRS process that was
used to capture requirements from existing requirement documents in an AADL model annotated
with requirement specification declarations [Feiler 2015b]. In that process, we analyzed the result-
ant AADL model for potential system integration issues, which we reported in SEI special report
Potential System Integration Issues in the Joint Multi-Role (JMR) Joint Common Architecture
(JCA) Demonstration System [Feiler 2015a].

In this report, we described an ALSA process that leverages and integrates with the ALRS pro-
cess. We used the EMV2 standard to annotate the AADL with fault information. This allowed us
to automate various safety-related analyses outlined in SAE ARP 4761. The fault propagation on-
tology of EMV2 allowed us to derive domain-specific guide words to identify the hazards of an
ASSA system and various hazard contributors. We identified several types of hazards: false nega-
tive, false positive, incorrect, untimely, and time-inconsistent SA information. We showed how
such safety analysis can be repeated for several layers of a system architecture by performing it on
ASSA in its operational context and then repeating it for the ASSA subcomponents.

Automation of safety analysis allows us to make architectural changes or enrich the fault annota-
tions and repeat the safety analysis at little incremental cost. This makes safety analysis of subsys-
tems affordable.

We have showed how safety analysis can be applied to functional and system architectures sepa-
rately and then repeated after the functional architecture is mapped to the system architecture. As
the ASSA is largely a software-based system, we showed that this architecture-led safety analysis
allows us to consider software faults as a major hazard contributor and understand the impact of
such fault occurrences.

We illustrated functional hazard assessment and fault impact analysis. The same models can be
the basis for common cause analysis, fault tree analysis, and, after annotation with fault occur-
rence, distributions for probabilistic safety analyses. We then used the safety analysis results to
identify those hazard contributors that can be eliminated by design and a set of requirements for a
health monitoring system for ASSA, whose responsibility is to inform the pilot of ASSA malfunc-
tions. In that context, we identified that the scope of responsibility for the health monitor was not
well defined in the original requirement document. Finally, we subjected the health monitoring
system itself to a hazard analysis and identified a potential common cause hazard if the ASSA
functional software and health monitoring software are allocated to the same processor.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix Acronym List

AADL Architecture Analysis & Design Language

ACVIP Architecture-Centric Virtual Integration Process

ALRS architecture-led requirement specification

ALSA architecture-led safety analysis

AMRDEC Aviation and Missile Research, Development, and Engineering Center

ASSA Aircraft Survivability Situation Awareness

ATAM Architecture Tradeoff Analysis Method

BAA Broad Agency Announcement

CPRET Constraints, Products, Resources, Elements, and Transformation

CRC cyclic-redundancy check

DCFM Data Correlation and Fusion Manager

EGI embedded GPS/INS

EMV2 Error Model Annex V2

FHA Functional Hazard Assessment

FMEA Failure Mode and Effect Analysis

HAZOP hazard and operability

HMS Health Monitoring System

INS Inertial Navigation System

JCA Joint Common Architecture

JMR Joint Multi-Role

MIS Modular Integrated Survivability

NACK negative acknowledgment

NM nautical miles

OSATE Open Source AADL Tool Environment

SA situational awareness

SADS situational awareness data service

SEBoK Software Engineering Body of Knowledge

SEI Software Engineering Institute

SSS System Segment Specification

STAMP System Theoretic Accident Model Process

STPA System Theoretic Process Analysis

UML Unified Modeling Language

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

References

URLs are valid as of the publication date of this document.

[ARP 4754A]
SAE Aerospace Recommended Practice, Guidelines for Development of Civil Aircraft and Sys-
tems, 2010-12, SAE ARP 4754A. 2010.

[ARP 4761]
SAE Aerospace Recommended Practice, Guidelines and Methods for Conducting the Safety As-
sessment Process on Civil Airborne Systems and Equipment, 1996-12, SAE ARP 4761. 1996.

[Delange 2014]
Delange, Julien et al. AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment.
CMU/SEI-2014-TR-020. Software Engineering Institute, Carnegie Mellon University, 2014.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=311884

[de Niz 2012]
de Niz, Dio et al. A Virtual Upgrade Validation Method for Software-Reliant Systems. CMU/SEI-
2012-TR-005. Software Engineering Institute, Carnegie Mellon University. June 2012. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115

[FAA 2009]
Federal Aviation Administration. Requirements Engineering Management Handbook
DOT/FAA/AR-08/32. 2009.
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR-08-32.pdf

[Feiler 2009]
Feiler, Peter H. Challenges in Validating Safety-Critical Embedded Systems. Proceedings of SAE
International AeroTech Congress. November 2009.

[Feiler 2015a]
Feiler, Peter H. Potential System Integration Issues in the Joint Multi-Role (JMR) Joint Common
Architecture (JCA) Demonstration System. CMU/SEI-2015-SR-031. Software Engineering Insti-
tute, Carnegie Mellon University. 2015. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setid=447176

[Feiler 2015b]
Feiler, Peter H. & Hudak, John. Requirements and Architecture Specification of the Joint Multi-
Role (JMR) Joint Common Architecture (JCA) Demonstration System. CMU/SEI-2015-SR-030.
Software Engineering Institute, Carnegie Mellon University. 2015. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetid=447184

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=311884
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=10115
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR-08-32.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=447176
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=447176
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=447176
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=447184
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=447184
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=447184

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[Goodin 2015]
Goodin, Dan. Boeing 787 Dreamliners Contain a Potentially Catastrophic Software Bug. Ars
Technica Technology Lab. May 1, 2015. http://arstechnica.com/information-technol-
ogy/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/

[Leveson 2012]
Leveson, N., Engineering a Safer World. MIT Press. 2012.

[Parnas 1991]
Parnas, D. & Madey, J. Functional Documentation for Computer Systems Engineering (Version
2), Technical Report CRL 237. McMaster University. September 1991.

[Paige 2009]
Paige, Richard F. et al. FPTC: Automated Safety Analysis for Domain-Specific Languages. In
Models in Software Engineering. Lecture Notes In Computer Science, Volume 5421. 2009. Pages
229-242.

[Rasmussen 2000]
Rasmussen, Jens & Svending, Inge. Risk Management in a Dynamic Society. Swedish Rescue
Services Agency. 2000.

http://arstechnica.com/information-technol-ogy/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/
http://arstechnica.com/information-technol-ogy/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/
http://arstechnica.com/information-technol-ogy/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2015

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Architecture-Led Safety Analysis of the Joint Multi-Role (JMR) Joint Common Architecture
(JCA) Demonstration System

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Peter H. Feiler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2015-SR-032

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Carnegie Mellon University Software Engineering Institute (SEI) team was involved in an Architecture-Centric Virtual Integration
Process shadow project for the U.S. Army’s Aviation and Missile Research, Development, and Engineering Center (AMRDEC) Science
& Technology Joint Multi-Role (JMR) vertical lift program on the Joint Common Architecture (JCA) Demonstration. The JCA Demo used
the Modular Integrated Survivability (MIS) system. The MIS project provided a Situational Awareness Data Manager service that was
integrated with Data Correlation and Fusion Manager (DCFM). This report summarizes the approach taken in the architecture-led safety
analysis of what will be referred to as the JMR Aircraft Survivability Situation Awareness (ASSA) system. The ASSA system was the
focus of the Phase 2 MIS project, in which an AMRDEC team developed support services for ASSA and contractors provided a DCFM
component. These components were implemented to conform to the Future Airborne Capability Environment (FACE™) Standard specifi-
cation for portability and integrated on two hardware platforms. By taking an architecture-led approach to safety analysis, the SEI team
demonstrated the use of Architecture Analysis and Design Language and the Error Model V2 Annex standard in performing safety analy-
sis of an embedded software system.

14. SUBJECT TERMS

Architecture, safety, AADL, ACVIP

15. NUMBER OF PAGES

47

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 An Architecture-Led Safety Analysis Process
	3 Modeling with AADL and the Error Model V2 Standard
	4 Safety Analysis of ASSA
	5 ASSA Health Monitoring System Requirements
	6 Summary and Conclusion
	Appendix Acronym List
	References

